Feed Forward and Backward Run in Deep Convolution Neural Network

نویسنده

  • Pushparaja Murugan
چکیده

Convolution Neural Networks (CNN), known as ConvNets are widely used in many visual imagery application, object classification, speech recognition. After the implementation and demonstration of the deep convolution neural network in Imagenet classification in 2012 by krizhevsky, the architecture of deep Convolution Neural Network is attracted many researchers. This has led to the major development in Deep learning frameworks such as Tensorflow, caffe, keras, theno. Though the implementation of deep learning is quite possible by employing deep learning frameworks, mathematical theory and concepts are harder to understand for new learners and practitioners. This article is intended to provide an overview of ConvNets architecture and to explain the mathematical theory behind it including activation function, loss function, feedforward and backward propagation. In this article, grey scale image is taken as input information image, ReLU and Sigmoid activation function are considered for developing the architecture and cross-entropy loss function is used for computing the difference between predicted value and actual value. The architecture is developed in such a way that it can contain one convolution layer, one pooling layer, and multiple dense layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N lo...

متن کامل

Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks for Pixelwise Classification

We present highly efficient algorithms for performing forward and backward propagation of Convolutional Neural Network (CNN) for pixelwise classification on images. For pixelwise classification tasks, such as image segmentation and object detection, surrounding image patches are fed into CNN for predicting the classes of centered pixels via forward propagation and for updating CNN parameters vi...

متن کامل

maxDNN: An Efficient Convolution Kernel for Deep Learning with Maxwell GPUs

This paper describes maxDNN, a computationally efficient convolution kernel for deep learning with the NVIDIA Maxwell GPU. maxDNN reaches 96.3% computational efficiency on typical deep learning network architectures. The design combines ideas from cuda-convnet2 with the Maxas SGEMM assembly code. We only address forward propagation (FPROP) operation of the network, but we believe that the same ...

متن کامل

Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).

In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...

متن کامل

Prediction of the Effect of Polymer Membrane Composition in a Dry Air Humidification Process via Neural Network Modeling

Utilization of membrane humidifiers is one of the methods commonly used to humidify reactant gases in polymer electrolyte membrane fuel cells (PEMFC). In this study, polymeric porous membranes with different compositions were prepared to be used in a membrane humidifier module and were employed in a humidification test. Three different neural network models were developed to investigate several...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.03278  شماره 

صفحات  -

تاریخ انتشار 2017